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LE’lTER TO THE EDITOR 

Convergence of finite-size scaling renormalisation 
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Vladimir Privman and Michael E Fisher 
Baker Laboratory, Cornell University, Ithaca, New York 14853, USA 

Received 13 April 1983 

Abstract. The rate of convergence of the transfer matrix finite-size scaling (or phenomenol- 
ogical renormalisation) method is studied. It is shown both heuristically and numerically 
that the convergence of estimates for exponents, etc, is governed asymptotically by the 
leading irrelevant-variable scaling exponent. The more rapid apparent convergence rates 
observed in many practical calculations for two-dimensional lattices of widths up to ten 
lattice spacings are attributed to cancellation between various correction terms. 

The finite-size rescaling method (or ‘phenomenological renormalisation group (RG) 
technique’) introduced by Nightingale (1979) has been used to study the critical 
behaviour of a variety of the (d = 2)-dimensional lattice models. (See Nightingale 
(1982) for an overview and references to the literature.) This method is essentially 
an application of the finite-size scaling theory of Fisher (1971; Fisher and Barber 
1972). Frequently, rather accurate numerical estimates for critical exponents are 
obtained as judged by comparison with exactly known or reliably conjectured results. 
The asymptotic rate of convergence of approximants for a critical exponent, say v, 
follows from finite-size scaling theory (see below) and should normally be governed 
by the leading irrelevant bulk RG eigenvalue or scaling exponent, h3 = y3, which is 
negative. One thus anticipates 

vL,J.-1= v[l+CLY’+E(L)], 

where vL,L-l is obtained from data for lattice strips of width L and L - 1  lattice 
spacings (see below), while E(L) denotes terms vanishing more rapidly than L-”” as 
L + m .  However, it has been observed by Derrida and DeSeze (1982), Blote and 
Nightingale (1982) and Derrida (1981) (see also references quoted in these papers) 
that the apparent convergence exponent, often called x ,  found by fitting the finite-size 
data for L 5 10 to the expression 

vL,L-I ~ ( l  +CL-”), (2) 
has a value x 2 2 for several models for which Iy31 s 1 is expected! Similar effects 
have been noted in ‘phenomenological RG’ analyses of Monte Carlo (MC) data, by 
Binder (1981). 

The work reported here attempts to understand the pattern of convergence of 
finite-size rescaling data and to resolve the seeming contradiction between (1) and 
(2). First we summarise the derivation of (1) with an emphasis on the variety of 
sources of corrections, arising from ‘bulk’ and ‘finite-size’ effects. Next we use a series 
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analysis technique to estimate y3 from finite-size data for the q = 3 Potts model and 
for percolation problems in d = 2 dimensions. Finally, we present some evidence that 
the abnormally large apparent convergence exponent, x ,  observed for these models, 
when L 6 10, is due to a cancellation between the CLy3 term in (1) and higher-order 
terms in E(L) .  We also comment briefly on methods of extrapolating finite size data. 

Consider, for illustration, the general bulk (L = 47) RG transformation for the 
susceptibility, which may be written 

x ( g t ,  gh ,  gu, . .) -bY/”x(gbYT,  ghbYH, gubY3, . .), (3) 

where b is the RG spatial rescaling factor, while g,, g h  and g ,  are nonlinear scaling 
fields which approach t = IT - T,I/T,, h = H/kBT,  and a constant U, respectively, in a 
smooth, analytic manner, when the critical point is approached. (We will comment 
below on further corrections.) Correspondingly, YT,  Y H  > 0 > y3  > . . . are the RG fixed 
point eigenvalues ( A l ,  Az, A 3 ,  . . .) or scaling exponents. We will retain explicitly only 
the leading irrelevant scaling field in (3). For finite-width systems with periodic (or 
helical) boundary conditions Br6zin (1982) has argued that (3) is still approximately 
valid for finite D =La >>a, where a is the lattice spacing, and that L can be identified 
as the RG flow parameter, i.e. b ccL (provided D / b  = La/b >>a) .  A finite-size scaling 
form is thus obtained as 

(4 ) 

where one cannot a priori exclude the possibility that the bulk nonlinear scaling fields, 
g,, gh ,  g,, . . . , are themselves modified by finite-size effects so that they also depend 
smoothly on, say, L-’: no theoretical study of this point is presently available to our 
knowledge. Further finite-size corrections depending on the lattice spacing a are 
contained in Ax in (4). In general, the only information available on their form is 
that they become exponentially small when L + 00 at fixed non-critical temperatures, 
i.e. when T # T,. For non-periodic, e.g. free, boundary conditions an expression of 
the form of (4) can also be advanced: however, the scaling function Y will then contain 
new arguments with L-dependent, ‘surface’ scaling fields which result from the 
generation of surface couplings by the RG transformations (see e.g. Diehl (1982) for 
a review of this topic and references). In addition, the exponential smallness (at 
T # T,) of other corrections, if true, cannot then be demonstrated so easily. For some 
further discussion see Fisher (1971, 1973a), and Nakanishi and Fisher (1983). 

For quantities such as the free energy or the finitesize longitudinal correlation 
length, 511, (calculated, say, from the two largest eigenvalues of the transfer matrix) 
the relations (3) or (4) hold, with appropriate exponents, only for the singular part, 
and additional additive background terms must be anticipated; these represent a 
further source of corrections to the leading scaling behaviour. In what follows we 
will concentrate on the effect of the leading bulk irrelevant scaling field, U. Consider, 
for example, the estimation of the correlation exponent v for a ferromagnetic model 
from the standard expression 

X ( g , ,  g h ,  g,, . . . ; L )  = L y ’ ” y x ( g J y T ,  g d y H ,  g L Y 3 ,  . . .) + Ax(g t ,  g h ,  g,, . . ; L ) ,  

where the subscript c denotes evaluation at T = T, (supposed known) and H = 0 
(Nightingale 1979). On using the scaling form 

&-LYc(tL1/”,  hLyH, uLy3), (6 )  
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(with, as usual, h l  = yT = l / u )  and the property (Fisher 1971) that Yc is differentiable 
any number of times at the origin where all the arguments vanish, we obtain after 
some algebra 

UL,L-I  = U (1 + CL y 3  + E1L + EzLZy3 + . . .), (7) 

where the higher terms involve powers n 3 y 3 - n z  with n2 =0, 1 ,2 , .  , . and n3 = 
1,2,3,  , . . . (Note, we are assuming here that U is not a ‘dangerous irrelevant variable’ 
as it would be for d exceeding the upper borderline dimensionality, d ,  (see Fisher 
1973b).) Recently, Aharony and Fisher (1983) studied the effects of the nonlinearities 
of scaling fields on corrections to scaling: on the basis of their analysis (9  IV) we 
immediately conclude that if the exact T, is used in (5 ) ,  only the coefficients of the 
correction terms in (7) will be affected by the ‘bulk’ (or L-independent) nonlinearities. 
Usually, however, T, itself is also estimated from finite-size data; for example one 
can solve numerically the relation 

(8) 

(9) 

Allowing for the bulk nonlinearities of the scaling fields, one can show that higher 
powers of L in (9) have exponents ( n 3 y 3 - n 1 y =  -n2) with n l ,  n3 = 1 , 2 , 3 , .  . . and 
n2 = 0, 1,2,  . . . . If we use To,= in place of T, in ( 5 ) ,  it follows from the above discussion 
that the general power of L appearing in AuL = V L , L - ~  - U is (n3y3-nz -n lyT)  with 
n ~ ,  n2 = 0,1,2,  . . . and n3 = 1,2,  . , . ; this should be compared with (7). Finally, if 
other bulk irrelevant scaling fields are allowed (with scaling exponents 0 > y 3  > y 4  > 
y s > .  . .) and if only bulk nonlinearities are allowed for, the general power of L in 
A u L  is 

tIl(T0, 

rL,L-loc Ly3-” + . . . . 

= 0; L)/L = tII(T0, H = 0; L - 1)/(L - 11, 
to obtain an estimate, To,=, for T,. If we put fL,=-l = ITo,= - T,I/T, then (6) gives 

where n l ,  n 2 ,  . . . = 0, 1,2,  . . . but at least one of n j  for j 3 3 is non-zero. This result, 
however, is not really definitive since we have neglected other types of corrections as 
discussed above in connection with the relation (4). Notice also that we have, as 
mentioned, assumed d < d ,  (=4,6,  etc) in the discussion (see also BrCzin 1982) and 
further supposed that no special relations hold between higher-order scaling exponents 
which may lead to logarithmic correction factors (see Wegner 1972, and the review 
by Patashinskii and Pokrovskii 1977). 

We proceed next to demonstrate that the Ly3 term can actually be detected in 
numerical sequences which display an apparent convergence rate with x = 2 when 
fitted as in (2). Consider the estimators 

(1 1) 
where (1) has been assumed. Asymptotically, the rL converge in a way similar to that 
expected for ratios of coefficients constructed for a logarithmic derivative series of a 
function which has a confluent singularity with exponent Iy31 (see further below). 
Since, for short series, naive ratio and Pad6 techniques may be misleading when 
confluent corrections are involved (see e.g. Baker 1975) we construct a transformed 
function. Thus consider the sequence 

rL = u + ( vL .L-1 -  u ) / ~  = u + ~ C L - ( I ~ ~ ’ + ~ ) + .  . . , 

cl0 = l / u ,  ai = uj- l / r j+ l  (i 2 1) (12) 
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and the function 
00 

f (z )  = 1 U,J“ =(v -z)-’[l +A(v  -z)” ’ +D(z)1, (13) 

which has a leading divergence with exponent 1 at zc = v and a confluent term with 
exponent (y31. Additional terms, denoted by D ( z )  in (13), will, of course, be present 
resulting from the transformation and from higher-order corrections in (1). Hopefully, 
these less singular terms will have a relatively small influence on the analysis: we will, 
however, comment later on their potentiality for interference. The particular Pad& 
type method of analysis which we adopt is that proposed recently by Adler, Moshe 
and Privman (1982a, b) which, in brief, involves transforming the series for f ( t )  into 
an expansion in powers of 

n = O  

s = 1 - [ 1 - (z/v)IY, (14) 

G(y,s)=y(l-s)(a/as) lnf[z(y,s) l ,  (15) 

with a variable trial value y. The series for 

is then computed and used to calculate several [MINI Pad6 approximants to G(y, 1) 
and thence a family of curves 

(16) 

in the (y, r) plane. A region of ‘convergence’ or ‘confluence’ of the r(y) curves is 
expected close to the point (Iy31, 1) in the (y, r) plane: see Adler et a1 (1982a, b) for 
details. 

Consider first the q = 3 Potts model and let us study a sequence of estimates for 
p/v obtained by Hamer (1982) from the expression 

(17) 

where ML(T)  is a quantity with the critical behaviour of magnetisation which vanishes 
with exponent p when L = 00. The exact value of @/U is known (Den Nijs 1979, 
Nienhuis, Riedel and Schick 1980, Nienhuis 1982), and this exponent replaces v in 
(11)-(14), (It is easy to verify that @ / V ) = , ~ - ~  of (17) converges to p/v with the same 
general pattern of corrections as for Y ~ , ~ - ~ . )  In figure 1 are plotted r(y) curves 
obtained from several near-diagonal Pad6 approximants. Also indicated, on the y 
axis, is the recent estimate, Iy31 =0.68*0.13, obtained from analysis of several low- 
temperature series expansions (Adler and Privman 1982); this range is consistent with 
earlier ly31 estimates (see Adler and Privman (1982) for references). The point with 
coordinates ( y  = 0.68, r = 1) is marked on the plot by a cross. The r(y) curves display 
a clear confluence close to this point: this provides a definite indication of the presence 
of the Ly3  term in the ( P / v ) L , ~ - I  sequence. The confluence region in figure 1, if taken 
at face value, suggests a rather narrow Iy31 range; however, the series analysed is 
relatively short and large systematic errors may arise in this method from background 
terms (see Adler et a1 1982b). Thus it is inadvisable to propose confidence limits 
narrower than indicated by the original series analysis, 

Consider, as a second example, the vL,L-l sequences of ( 5 )  for percolation which 
were calculated by Derrida and DeSeze (1982). Here only results for their longest 
Y L , L - ~  sequence will be discussed: this was obtained for site percolation with helical 
boundary conditions. (Other vL.L-l sequences give similar results; some of the corres- 
ponding critical point, (P~)L,L-I, data are discussed briefly below.) The exact value of 

[ M I N I  U y )  = G ( y ,  s = 1) -- G(y, 11, 

( P I Y ) L , L - l  = (1 -L)[ML(TC)/ML-,(Tc) - 11, 
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Figure 1. Plots of T(y)  derived from the sequence of estimates for p / u  for the q = 3 Potts 
model, obtained with [2/6], [3/5], [4/4], [5/31,[6/21, [2/51, [3/41, [4/3] and [5/2] Pad6 
approximants. The cross indicates the series estimate Iysl = 0.68, r = 1; the corresponding 
range is shown on the axis. 

v is known (Den Nijs 1979, Nienhuis et af 1980, Nienhuis 1982). Several series and 
MC studies of the leading corrections to scaling for percolation have been reported 
and the results cluster in two non-overlapping ranges of y (see Adler et af (1982b) 
for a review) as obtained from the relations y = 8/v and y = n @ / v ,  where 8 and fl 
are temperature-like and field-like bulk confluent exponents. The above relations are 
meaningful only for corrections due to irrelevant scaling fields. Since there is a 
theoretical argument (Aharony and Fisher 1983, Margolina, DjordjeviC, Stauffer and 
Stanley 1983) which suggests that the higher-value range is observed when corrections 
due to the nonlinearity of gl are substantial, we concentrate on the lower range of 
estimates. Thus Iy31 =0.94*0.11 (Adler et a1 1982a) is typical of both the series 
estimates and the MC results of Stauffer (1981). The corresponding curves r(y) are 
plotted in figure 2 where the point (y = 0.94, r = 1) is marked by a cross and the 
quoted ly31 range is shown on the y axis. One observes a confluence region consistent 
with thecentral series estimate. Again, one should probably not be tempted to narrow 
the uncertainties quoted in the series analysis: indeed, systematic errors may be 
especially large in this case owing to a linear term, Dl(v  - z ) ,  in D ( z )  of (13), whose 
presence is anticipated since it represents merely an additive, constant background in 
f(z). One may try to study the resulting interference by dividing out different terms 
(see Adler and Privman 1982) but the available series are too short for such analysis 
to be convincing. Independent evidence for the presence of both terms comes from 
a study of ( p c ) L , L - i  for bond percolation (where the exact value is p c  = t )  in which two 
‘loose’ confluences were found: one at y = 1 and another in the range of y consistent 
with the lower half of the range (y31 + 1 / v  = 1.69k0.11 derived from series. 

The above studies demonstrate that the expected leading correction term, varying 
as LYn, is indeed present in the finite-size sequences. There is additional convincing 
evidence that for L 6 1 0  the asymptotic form for L >>1 has not been achieved in 
existing finite-size data. Thus several finite-size sequences vary non-monotonically 
(see e.g. Derrida and DeSeze 1982). Even for some monotonic sequences there are 
problems: thus if one determines an exponent x = x ,  from an exponent sequence 
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Figure 2. Plots of T(y) obtained from estimates for v for site percolation on a square 
lattice with helical boundary conditions (using the same Pad6 approximants as in figure 
1). The cross indicates the series estimate Jy31 = 0.94, r = 1 with the associated range 
being shown on the axis. 

vL.L-1 and another exponent x = x T ,  from estimates for T, as in (8), one should find 
x~ , -x ,  --- l / v .  (Compare (7) and (9).) In practice, however, this difference takes other 
values (see e.g. Derrida 1981). In other cases x depends strongly on the boundary 
conditions (see e.g. Kinzel and Yeomans 1981). Unfortunately, the pattern of correc- 
tions to scaling in the d = 2 Ising spin-k model, where vL.L-1 is known exactly (Onsager 
1944, Derrida and DeSeze 1982), is effectively 'pathological' since ull non-analytic 
corrections seem to vanish identically (Aharony and Fisher 1980). 

Since the sequences with L d 10 appear too short to fit reliably to more than one 
power-law term, an indirect method of estimating the relative amplitude of the 
contribution of Ly3 term has been attempted. To this end, consider 

(18) 
(where Y now denotes the exponent, etc appropriate for the particular sequence 
considered). The term in Ly3 cancels in CL which should thus approach v as L +CO 
at a rate determined by the higher powers in (7) but with modified coefficients. (In 
practice, one must calculate using several Iy31 values based on the range of series 
estimates.) One finds in all the examples that [ C L  - V I  usually exceeds ( C L , L - ~  - V I  while 
the ratio ( C L - Y I / I V L , L - ~ - V I  ranges from below 1 to 10. This suggests that there is 
generally some cancellation between the CLy3 term in v ~ ~ ~ - ~  and one or more 
higher-order terms from E(L)  (see (1)) which leads to as much as an order of magnitude 
reduction in the deviation A Y L  at L --- 10 over what the leading term alone would give. 
Such cancellation also leads fairly naturally to the observed inequality x > Iy3(. Notice, 
however, that there is probably no general underlying mechanism of cancellation, 
beyond fortuitous numerical coincidence, since there is at least one counter-example 
in which one does find x close to the expected Jy31 value (Uzelac and Jullien 1981). 

A related topic is the actual technique of extrapolation of the finite-size sequences 
to the L + CO limit. An effective method was developed by Hamer and Barber (1981). 
In each ireration of their technique, a power-law correction is, ideally, cancelled. 
However, no effective method is known for the systematic study of exponents and 
the coefficients of correction terms. (The method we have used above is useful only 
for estimating y 3  in models with exactly known leading exponents or critical points.) 

cL = [ L ' Y ~ ' Y ~ , ~ - ~  - (L - 1)Iy31YL_I,L_z~/[~1y3'- (L - 1)1y31] 
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Recently, Barber (1983) proposed allowing for additional scaling fields by extend- 
ing the parameter space (see also Yeomans and Fisher 1983). Although his methods 
are somewhat limited, in that they require prior knowledge of aspects of the phase 
diagram, they do seem to be a step in the right direction. Likewise, in series analysis 
it has proven very useful (Chen, Fisher and Nickel 1982) to allow for more variables 
when studying non-analytic, confluent correction terms. Basically, the idea in both 
cases is to fit to a multisingular scaling form like (3). 

Helpful discussions with M Barma, E BrCzin, D A Huse, M P Nightingale and R 
Pandit are appreciated. One of us (VP) is grateful for the financial support of the 
Rothschild Fellowship Foundation. Further support by the National Science Founda- 
tion?, in part through the Materials Science Center at Cornel1 University, is gratefully 
acknowledged. 
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